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Abstract
Answer Set Programming (ASP) represents an elegant way of in-
troducing non-monotonic reasoning into logic programming. ASP
has gained popularity due to its applications to planning, default
reasoning and other areas of AI. However, none of the approaches
and current implementations for ASP are goal-directed. In this pa-
per we present a technique based on coinduction that can be em-
ployed to design SLD resolution-style, goal-directed methods for
executing answer set programs. We also discuss advantages and ap-
plications of such goal-directed execution of answer set programs,
and report results from our implementation.

Categories and Subject Descriptors D.1.6 [Programming Tech-
niques]: Logic Programming

General Terms Algorithms

Keywords Answer set programming, goal-directed execution,
coinduction

1. Introduction
Answer Set Programming (ASP) is an elegant way of develop-
ing non-monotonic reasoning applications. ASP has gained wide
acceptance, and considerable research has been done in develop-
ing the paradigm as well as its implementations and applications.
ASP has been applied to important areas such as planning, schedul-
ing, default reasoning, reasoning about actions [3], etc. Numerous
implementations of ASP have been developed, ranging from DLV

c©ACM 2012. This is the author’s version of the work. It is posted here for
your personal use. Not for redistribution. The definitive Version of Record
was published in Proceedings of the 14th symposium on Principles and
Practice of Declarative Programming (PPDP ’12), pages 35-44, http:
//dx.doi.org/10.1145/2370776.2370782.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’12, September 19–21, 2012, Leuven, Belgium.
Copyright c© 2012 ACM 978-1-4503-1522-7/12/09. . . $10.00

([17]) and smodels [22] to SAT-based solvers such as cmodels [13]
and the conflict-driven solver clasp [10]. However, these imple-
mentations compute the whole answer set: i.e., they are not goal-
directed in the fashion of Prolog. Given an answer set program
and a query goal Q, a goal-directed execution will systematically
enumerate—via SLD style call expansions and backtracking—all
answer sets that contain the propositions/predicates in Q. Other
efforts have been made to realize goal-directed implementations
(e.g., [5]), however, these approaches can handle only a limited
class of programs and/or queries.

In this paper we describe a goal-directed execution method that
works for any answer set program as well as for any query. The
method relies on coinductive logic programming (co-LP) [14]. Co-
LP can be regarded as providing an operational semantics, termed
co-SLD resolution, for computing greatest fixed points (gfp) of
logic programs. Co-SLD resolution systematically computes ele-
ments of the gfp of a program via backtracking [14, 27]. Addition-
ally, calls are allowed to coinductively succeed if they unify with
one of their ancestor calls [27]. To permit this, each call is stored
in the coinductive hypothesis set (CHS) as the call is made. A more
detailed introduction to co-LP and co-SLD resolution can be found
in Appendix A.

A goal-directed method for executing answer set programs is
analogous to top-down, SLD style resolution for Prolog, while cur-
rent popular methods for ASP are analogous to bottom-up methods
that have been used for evaluating Prolog (and Datalog) programs
[25]. A goal-directed execution method for answering queries for
an answer set program has several advantages. The main advantage
is that it paves the way to lifting the restriction to finitely ground-
able programs, and allows realization of ASP with full first-order
predicates [20].

In the rest of the paper we develop a goal-directed strategy
for executing answer set programs, and prove that it is sound and
complete with respect to the method of Gelfond and Lifschitz.
We restrict ourselves to only propositional (grounded) answer set
programs in this paper; work is in progress to extend our goal-
directed method to predicate answer set programs [20, 21]. Note
that the design of a top-down goal-directed execution strategy for
answer set programs has been regarded as quite a challenging
problem [3]. As pointed out in [6], the difficulty in designing a
goal-directed method for ASP comes about due to the absence of a
relevance property in stable model semantics, on which answer set
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programming is based [6, 23, 24]. We will introduce a modified
relevance property that holds for our goal-directed method and
guarantees that partial answer sets computed by our method can
be extended to complete answer sets.

2. Answer Set Programming (ASP)
Answer Set Programming (ASP) [12] (A-Prolog [11] or AnsProlog
[3]) is a declarative logic programming paradigm which encapsu-
lates non-monotonic or common sense reasoning. The rules in an
ASP program are of the form:

p :- q1, ..., qm, not r1, ..., not rn.
where m ≥ 0 and n ≥ 0. Each of p and qi (∀i ≤ m) is a literal,
each not rj (∀j ≤ n) is a naf-literal (not is a logical connective
called negation as failure (naf) or default negation). The semantics
of an Answer Set program P is given via the Gelfond-Lifschitz
method [3] in terms of the answer sets of the program ground(P),
obtained by grounding the variables in the program P.

Gelfond-Lifschitz Transform (GLT) Given a grounded Answer
Set program P and a candidate answer set A, a residual program R
is obtained by applying the following transformation rules: for all
literals L ∈ A,

1. Delete all rules in P which have not L in their body.

2. Delete all the remaining naf-literals (of the form not M) from
the bodies of the remaining rules.

The least fixed-point (say, F) of the residual program R is next
computed. If F = A, then A is a stable model or an answer set
of P.

ASP can also have rules of the form:
:- q1, ..., qm, not r1, ..., not rn.
p :- q1, ..., qm, not r1, ..., not rn, not p.

These rules capture the non-monotonic aspect of Answer Set Pro-
gramming. Consider an example rule:

p :- q, not p.
Following the Gelfond-Lifschitz method (GL method) outlined
above, this rule restricts q (and p) to not be in the answer set (un-
less p happens to be in the answer set via other rules, in which case
due to presence of not p this rule will be removed while gener-
ating the residual program). Note that even though an answer set
program can have other rules to establish that q is in the answer set,
adding the rule above forces q to not be in the answer set unless p
succeeds through another rule, thus making ASP non-monotonic.

3. Goal-directed ASP Issues
Any normal logic program can also be viewed as an answer set pro-
gram. However, ASP adds complexity to a normal logic program in
two ways. In addition to the standard Prolog rules, it allows:

1. Cyclical rules which when used to expand a call to a subgoal
G lead to a recursive call to G through an even (but non-zero)
number of negations. For example, given the program P1 below:

p :- not q. . . . Rule P1.a
q :- not p. . . . Rule P1.b

Ordinary logic programming execution for the query ?- p. (or
?- q.) will lead to non-termination. However, ASP will pro-
duce two answer sets: {p, not q} and {q, not p}. Expand-
ing the call p using Rule P1.a in the style of SLD resolution will
lead to a recursive call to p that is in scope of two negations

Note that we will list all literals that are true in a given answer set.
Conventionally, an answer set is specified by listing only the positive literals
that are true; those not listed in the set are assumed to be false.

(p → not q → not not p). Such rules are termed ordinary
rules. Rule P1.b is also an ordinary rule, since if used for ex-
panding the call to q, it will lead to a recursive call to q through
two negations. For simplicity of presentation, all non-cyclical
rules will also be classified as ordinary rules.

2. Cyclical rules which when used to expand a call to subgoal G
lead to a recursive call to G that is in the scope of an odd number
of negations. Such recursive calls are known as odd loops over
negation (OLONs). For example, given the program P2 below:

p :- q, not p, r. . . . Rule P2.a

a call to p using Rule P2.a will eventually lead to a call to
not p. Under ordinary logic programming execution, this will
lead to non-termination. Under ASP, however, the program
consisting of Rule P2.a has {not p, not q, not r} as its
answer set. For brevity, we refer to rules containing OLONs as
OLON rules.

Note that a rule can be both an ordinary rule and an OLON rule,
since given a subgoal G, its expansion can lead to a recursive call to
G through both even and odd numbers of negations along different
expansion paths. For example in program P3 below, Rule P3.a is
both an ordinary rule and an OLON rule.

p :- q, not r. . . . Rule P3.a
r :- not p. . . . Rule P3.b
q :- t, not p. . . . Rule P3.c

Our top-down method requires that we properly identify and
handle both ordinary and OLON rules. We will look at each type of
rule in turn, followed by the steps taken to ensure that our method
remains faithful to the GL method.

3.1 Ordinary Rules
Ordinary rules such as rules P1.a and P1.b in program P1 above
exemplify the cyclical reasoning in ASP. The rules in the example
force p and q to be mutually exclusive, i.e., either p is true or q is
true, but not both. One can argue the reasoning presented in such
rules is cyclical: If p is in the answer set, then q cannot be in the
answer set, and if q is not in the answer set, then p must be in the
answer set.

Given a goal, G, and an answer set program comprised of only
ordinary rules, G can be executed in a top-down manner using
coinduction, through the following steps:

• Record each call in the CHS. The recorded calls constitute the
coinductive hypothesis set, which is the potential answer set.

• If at the time of the call, the call is already found in the CHS, it
succeeds coinductively and finishes.

• If the current call is not in the CHS, then expand it in the style
of ordinary SLD resolution (recording the call in the CHS prior
to expansion).

• Simplify not not p to p, whenever possible, where p is a
proposition occurring in the program.

• If success is achieved with no goals left to expand, then the
coinductive hypothesis set contains the (partial) answer set.

The top-down resolution of query p with program P1 will proceed
as follows.

:- p CHS = {}
(expand p by Rule P1.a)

:- not q CHS = {p}
(expand q by Rule P1.b)



:- not not p CHS = {p, not q}
(simplify not not p→ p )

:- p CHS = {p, not q}
(coinductive success: p ∈ CHS)

:- � success: answer set is {p, not q}

Note that the maintenance of the coinductive hypothesis set (CHS)
is critical. If a call is encountered that is already in the CHS, it
should not be expanded, it should simply (coinductively) succeed.
Note that the query q will produce the other answer set {q, not
p} in a symmetrical manner. Note also that the query not q will
also produce the answer set {p, not q} as shown below. Thus,
answers to negated queries can also be computed, if we apply the
coinductive hypothesis rule to negated goals also, i.e., a call to not
p succeeds, if an ancestor call to not p is present:

:- not q CHS = {}
(expand q by Rule P1.b)

:- not not p CHS = {not q}
(not not p → p)

:- p CHS = {p, not q}
(expand p by Rule P1.a)

:- not q CHS = {p, not q}
(coinductive success for not q)

:- � success: answer set is {p, not q}

3.2 OLON Rules
Our goal-directed procedure based on coinduction must also work
with OLON rules. OLON rules are problematic because their influ-
ence on answer sets is indirect. Under ASP, rules of the form

p :- q1, q2, ..., qk, not p.
hold only for those (stable) models in which p succeeds through
other rules in the program or at least one of the qi’s is false. Note
that a headless rule of the form:

:- q1, q2, ..., qn.
is another manifestation of an OLON rule, as it is equivalent to the
rule:

p :- q1, q2, ..., qn, not p.
where p is a literal that does not occur anywhere else in the pro-
gram, in the sense that the stable models for the two rules are iden-
tical.

Without loss of generality, consider the simpler rule:
p :- q, not p.

For an interpretation to be a (stable) model for this rule, either p
must succeed through other rules in the program or q must be false.
Two interesting cases arise: (i). p is true through other rules in the
program. (ii) q is true through other rules in the program.

For case (i), if p is true through other means in the program,
then according to the Gelfond-Lifschitz method, it is in the answer
set, and the OLON rule is taken out of consideration due to the
occurrence of not p in its body. For case (ii), if q is true through
other means and the rule is still in consideration due to p not being
true through other rules in the program, then there are no answer
sets, as q is both true and false. Thus, the answer set of the program
P4 below is: {p, not q}.

p :- q, not p. . . . Rule P4.1
p. . . . Rule P4.2

while there is no answer set for program P5 below:

p :- q, not p. . . . Rule P5.1
q. . . . Rule P5.2

Given an OLON rule with p as its head and the query p, exe-
cution based on co-SLD resolution will fail, if we require that the
coinductive hypothesis set (CHS) remains consistent at all times.

That is, if we encounter the goal g (resp. not g) during execution
and not g ∈ CHS (resp. g ∈ CHS), then the computation fails and
backtracking ensues.

As another example, consider the program containing rule P4.1
(which has p in its head), but not rule P4.2, and the query :-
p. When execution starts, p will be added to the CHS and then
expanded by rule P4.1; if the call to q fails, then the goal p also
fails. Alternatively, if q succeeds due to other rules in the program,
then upon arriving at the call not p, failure will ensue, since not
p is inconsistent with the current CHS (which equals {p, q} prior
to the call not p).

Thus, OLON rules do not pose any problems in top-down ex-
ecution based on coinduction, however, given an OLON rule with
p as its head, if p can be inferred by other means (i.e., through
ordinary rules) then the query p should succeed. Likewise, if q suc-
ceeds by other means and p does not, then we should report a fail-
ure (rather, report the absence of an answer set; note that given our
conventions, CHS = {} denotes no answer set). We discuss how
top-down execution of OLON rules is handled in Section 3.4.

3.3 Coinductive Success Under ASP
While our technique’s use of co-SLD resolution has been outlined
above, it requires some additional modification to be faithful to
the Gelfond-Lifschitz method. Using normal coinductive success,
our method will compute the gfp of the residual program after the
GL transform, while the GL method computes the lfp. Consider
Program P6 below:

p :- q. . . . Rule P6.1
q :- p. . . . Rule P6.2

Our method based on coinduction will succeed for queries :-
p and :- q producing the answer set {p, q} while under the GL
method, the answer set for this program is {not p, not q}. Our
top-down method based on coinduction really computes the gfp of
the original program. The GL method computes a fixed point of the
original program (via the GL transformation and then computation
of the lfp of the residual program) that is in between the gfp and
the lfp of the original program. In the GL method, direct cyclical
reasoning is not allowed, however, cyclical reasoning that goes
through at least one negated literal is allowed. Thus, under the GL
method, the answer set of program P6 does not contain a single
positive literal, while there are two answer sets for the program P1
given earlier, each with exactly one positive literal, even though
both programs P1 and P6 have only cyclical rules.

Our top-down method can be modified so that it produces an-
swer sets consistent with the GL method: a coinductive recursive
call can succeed only if it is in the scope of at least one negation.
In other words, the path from a successful coinductive call to its
ancestor call must include a call to not.

This restriction disallows inferring p from rules such as
p :- p.

With this operational restriction in place, the CHS will never con-
tain a positive literal that is in the gfp of the residual program ob-
tained after the GLT, but not in its lfp. To show this, let us assume
that, for some ASP program, a call to p will always encounter at
least one recursive call to p with no intervening negation. In such a
case, p will never be part of any answer set:

• Under our goal-directed method, any call to p will fail when a
recursive call is encountered with no intervening negation.

• Under the GL method, p will never be in the lfp of the residual.
Even if a rule for p is present in the residual and all other
dependencies are satisfied, the rule will still depend on the
recursive call to p.



3.4 NMR Consistency Check
To summarize, the workings of our goal-directed strategy are as
follows: given a goal G, perform co-SLD resolution while restrict-
ing coinductive success as outlined in Section 3.3. The CHS serves
as the potential answer set. A successful answer will be computed
only through ordinary rules, as all OLON rules will lead to fail-
ure due to the fact that not h will be encountered with proposition
h present in the CHS while expanding with an OLON rule whose
head is h. Once success is achieved, the answer set is the CHS. As
discussed later, this answer set may be partial.

The answer set produced by the process above is only a potential
answer set. Once a candidate answer set has been generated by co-
SLD resolution as outlined above, the set has to be checked to see
that it will not be rejected by an OLON rule. Suppose there are n
OLON rules in the program of the form:

qi :- Bi.
where 1 ≤ i ≤ n and each Bi is a conjunction of goals. Each Bi
must contain a direct or indirect call to the respective qi which is
in the scope of odd number of negations in order for qi :- Bi. to
qualify as an OLON rule.

If a candidate answer set contains qj (1 ≤ j ≤ n), then
each OLON rule whose head matches qj must be taken out of
consideration (this is because Bj leads to not(qj) which will be
false for this candidate answer set). For all the other OLON rules
whose head proposition qk (1 ≤ j ≤ n) is not in the candidate
answer set, their bodies must evaluate to false w.r.t. the candidate
answer set, i.e., for each such rule, Bk must evaluate to false w.r.t.
the candidate answer set.

The above restrictions can be restated as follows: a candidate
answer set must satisfy the formula qi ∨ not Bi (1 ≤ i ≤ n) for
each OLON rule qi :- Bi. (1 ≤ i ≤ n) in order to be reported as
the final answer set. Thus, for each OLON rule, the check

chk qi :- qi.
chk qi :- not Bi.

is constructed by our method. Furthermore, not Bi will be ex-
panded to produce a chk qi clause for each literal in Bi. For ex-
ample, if Bi represented the conjunction of literals s, not r, t
in the above example, the check created would be:

chk qi :- qi.
chk qi :- not s.
chk qi :- r.
chk qi :- not t.

A candidate answer set must satisfy each of these checks in
order to be reported as a solution. This is enforced by rolling the
checks into a single call, termed nmr chk:

nmr chk :- chk q1, chk q2, ...chk qn.
Now each query Q is transformed to Q, nmr chk. before it is posed
to our goal-directed system. One can think of Q as the generator
of candidate answer sets and nmr chk as the filter. If nmr chk
fails, then backtracking will take place and Q will produce another
candidate answer set, and so on. Backtracking can also take place
within Q itself when a call to p (resp. not p) is encountered and
not p (resp. p) is present in the CHS. Note that the CHS must be
a part of the execution state, and be restored upon backtracking.

4. Goal-directed Execution of Answer Set
Programs

We next describe our general goal-directed procedure for comput-
ing answer sets.

4.1 Dual Rules
For simplicity, we add one more step to the process. Similarly to
Alferes et al [1], for each rule in the program, we introduce its dual.

That is, given a proposition H’s definition (Bi’s are conjunction of
literals):

H :- B1.
H :- B2.
...
H :- Bn.

we add the dual rule
not H :- not B1, not B2, ..., not Bn.

If a proposition q appears in the body of a rule but not in any of the
rule heads, then the fact

not q.
is added. Note that adding the dual rules is not necessary; it only
makes the exposition of our goal-directed method easier to present
and understand.

4.2 Goal-directed Method for Computing Answer Sets
Given a propositional query :- Q and a propositional answer set
program P, the goal-directed procedure works as described below.
Note that the execution state is a pair (G, S), where G is the current
goal list, and S the current CHS.

1. Identify the set of ordinary rules and OLON rules in the pro-
gram.

2. Assert a chk qi rule for every OLON rule with qi as its head
and build the nmr check as described in Section 3.4.

3. For each ordinary rule and chk qi rule, construct its dual ver-
sion.

4. Append the nmr check to the query.

5. Set the initial execution state to: (:- G1, ..., Gn, {}).
6. Non-deterministically reduce the execution state using the fol-

lowing rules:

(a) Call Expansion:
(:- G1, .., Gi, .., Gn, S)
→ (:- G1, .., B1, .., Bm, .., Gn, S ∪ {Gi})
where Gi matches the rule Gi :- B1, ..., Bm. in P, Gi
/∈ S and not Gi /∈ S.

(b) Coinductive Success:
(:- G1, .., Gi−1, Gi, Gi+1, .., Gn, S)
→ (:- G1, .., Gi−1, Gi+1, .., Gn, S)
if Gi ∈ S and either:

i. Gi is not a recursive call or

ii. Gi is a recursive call in the scope of a non-zero number
of intervening negations.

(c) Inductive Success:
(:- G1, .., Gi−1, Gi, Gi+1, .., Gn, S)
→ (:- G1, .., Gi−1, Gi+1, .., Gn, S ∪ {Gi})
if Gi matches a fact.

(d) Coinductive Failure:
(:- G1, .., Gi, .., Gn, S)→ (fail, S)
if either:

i. not Gi ∈ S or

ii. Gi ∈ S and Gi is a recursive call without any intervening
negations.

(e) Inductive Failure:
(:- G1, .., Gi, .., Gn, S)→ (fail, S)
if Gi has no matching rule in P.

(f) Print Answer:
(:- true, S)→ success: S is the answer set
where ‘:- true’ ≡ empty goal list



Note that when all the goals in the query are exhausted, exe-
cution of nmr chk begins. Upon failure, backtracking ensues, the
state is restored and another rule tried. Note that negated calls are
expanded using dual rules as in [1], so it is not necessary to check
whether the number of intervening negations between a recursive
call and its ancestor is even or odd. (See the call expansion rule
above). A detailed example of goal-directed execution can be found
in Appendix B. Next we discuss a few important issues:

Identifying OLON and Ordinary Rules Given a propositional
answer set program P, OLON rules and ordinary rules can be iden-
tified by constructing and traversing the call graph. The complexity
of this traversal is O(|P| ∗ n), where n is the number of proposi-
tional symbols occurring in the head of clauses in P and |P| is a
measure of the program size. Note also that during the execution
of a query Q, we need not make a distinction between ordinary and
OLON rules; knowledge of OLON rules is needed only for creating
the nmr chk.

Partial Answer Set Our top-down procedure might not generate
the entire answer set. It may generate only the part of the answer
set that is needed to evaluate the query. Consider program P7:

p :- not q.
q :- not p.
r :- not s.
s :- not r.

Under goal-directed execution, the query :- q. for program P7
will produce only {q, not p} as the answer since the rules defin-
ing r and s are completely independent of rules for p and q. One
could argue that this is an advantage of a goal-directed execution
strategy rather than a disadvantage, as only the relevant part of the
program will be explored. In contrast, if the query is :- q, s, then
the right answer {q, not p, s, not r} will be produced by the
goal-directed execution method. Thus, the part of the answer set
that gets computed depends on the query. Correct maintenance of
the CHS throughout the execution is important as it ensures that
only consistent and correct answer sets are produced.

5. Soundness and Correctness of the
Goal-directed Method

We will now show the correctness of our goal-directed execution
method by showing it to be sound and complete with respect to the
GL method. First, we will examine the modified relevance property
which holds for our method.

5.1 Relevance
As we stated in the introduction, one of the primary problems
with developing a goal-directed ASP implementation is the lack
of a relevance property in stable model semantics. Dix introduces
relevance by stating that, “given any semantics SEM and a program
P, it is perfectly reasonable that the truth-value of a literal L, with
respect to SEM(P), only depends on the subprogram formed from
the relevant rules of P with respect to L” [6]. He formalizes this
using the dependency-graph of P, first establishing that

• “dependencies of(X) := {A : X depends on A}, and
• rel rul(P,X) is the set of relevant rules of P with respect to X,

i.e. the set of rules that contain an A ∈ dependencies of(X)
in their heads” [6]

and noting that the dependencies and relevant rules of ¬X are the
same as those of X [6]. He then defines relevance as, for all literals
L:

SEM(P )(L) = SEM(rel rul(P,L))(L) (1)

The relevance property is desirable because it would ensure that
a partial answer set computed using only relevant rules for each
literal could be extended into a complete answer set. However,
stable model semantics do not satisfy the definition as given. This
is because OLON rules can alter the meaning of a program and
the truth values of individual literals without occurring in the set of
relevant rules [6, 23]. For instance, an irrelevant rule of the form p
:- not p. when added to an answer set program P, where P has
one or more stable models and p does not occur in P, results in a
program that has no stable models.

Approaches such as [23] have addressed the lack of a relevance
property by modifying stable model semantics to restore relevance.
However, our implementation can be viewed as restoring relevance
by expanding the definition of relevant rules to include all OLON
rules in a program. Because the NMR check processes every OLON
rule, it has the effect of making the truth value of every literal in a
program dependent on such rules. That is,

nmr rel rul(P,L) = rel rul(P,L) ∪O,

O = { R: R is an OLON rule in P }
(2)

Using nmr rel rul(P,L) in place of rel rul(P,L), a modified ver-
sion of equation 1 above holds for our semantics:

SEM(P )(L) = SEM(nmr rel rule(P,L))(L) (3)

As a result, any partial model returned by our semantics is guaran-
teed to be a subset of one or more complete models.

5.2 Soundness
Theorem 1. For the non-empty set X returned by successful top-
down execution of some program P, the set of positive literals in X
will be an answer set of R, the set of rules of P used during top-
down execution.

Proof. Let us assume that top-down execution of a program P
has succeeded for some query Q consisting of a set of literals in
P, returning a non-empty set of literals X. We can observe that
R ⊆

⋃
L∈Q

nmr rel rul(P,L): for each positive literal in Q, one

rule with the literal in its head will need to succeed, for each
negative literal in Q all rules with the the positive form of the literal
in their head will need to fail, and the resulting set must satisfy the
NMR check. We will show that X is a valid answer set of R using
the GL method. First, because X may contain negative literals and
the residual program produced by the GL method is a positive one,
let us remove any rules in R containing the positive version of such
literals as a goal, and then remove the negated literals from X to
obtain X’. Because our algorithm allows negative literals to succeed
if and only if all rules for the positive form fail or no such rules
exist, only rules which failed during execution will be removed
by this step. Next, let us apply the GL transformation using X’ as
the candidate answer set to obtain the residual program R’. This
will remove rules containing the negation of any literal in X’ and
remove any negated goals from the remaining rules.

We know that X’ will be an answer set of R if and only if X’
= LFP(R’). Now let us examine the properties of R’. As positive
literals, we know that each literal in X’ must occur as the head of
a rule in R which succeeded during execution. Because such rules
would have failed if the negation of any goal was present in the
CHS, we know that such rules would not have been eliminated from
the residual program by the GL transformation, and are thus still
present in R’ save for the removal of any negated goals. Because
any rules containing the negation of a literal in X had to fail during
execution, at least one goal in each of these rules must have failed,
resulting in the negation of the goal being added to the CHS.
Furthermore, because the NMR check applies the negation of each



OLON rule, again the negation of some goal in each such rule
must have been added to the CHS. Thus any rule which failed
during execution and yet was included in R will have been removed
from R’. Finally, because our algorithm allows coinductive success
to occur only in the scope of at least one negation, the removal
of negated goals from the residual program will ensure that R’
contains no loops. Because the remaining rules in R’ must have
succeeded during execution, their goals must have been added to
the CHS, and therefore those goals consisting of positive literals
form X’. Thus R’ is a positive program with no loops, and each
literal in X’ must appear as the head of some rule in R’ which is
either a fact or whose goals consist only of other elements in X’.
Therefore the least fixed point of R’ must be equal to X’, and X’
must be an answer set of R.

Theorem 2. Our top-down execution algorithm is sound with
respect to the GL method. That is, for the non-empty set of literals
X returned by successful execution of some program P, the set of
positive literals in X is a subset of one or more answer sets of P.

Proof. As shown above, the positive literals in the set returned
by successful execution of P will be an answer set of R ⊆⋃
L∈Q

nmr rel rul(P,L). Because R will always contain all OLON

rules in P, no unused rules in P are capable of affecting the truth
values of the literals in X. Thus the modified definition of relevance
holds for all literals in X under our semantics and the partial an-
swer set returned by our algorithm is guaranteed to be extensible
to a complete one. Thus our algorithm for top-down execution is
sound with respect to the GL method.

5.3 Completeness
Theorem 3. Our top-down execution algorithm is complete with
respect to the GL method. That is, for a program P, any answer
set valid under the GL method will succeed if used as a query
for top-down execution. In addition, the set returned by successful
execution will contain no additional positive literals.

Proof. Let X be a valid answer set of P obtained via the GL method.
Then there exists a resultant program P’ obtained by removing
those rules in P containing the negation of any literal in X and
removing any additional negated literals from the goals of the
remaining rules. Furthermore, because X is a valid answer set of
P, X = LFP(P’). This tells us that for every literal L ∈ X there is a
rule in P’ with L as its head, which is either a fact or whose goals
consist only of other literals in X.

Let us assume that X is posed as a query for top-down execution
of P. As we know that each L ∈ X has a rule in P’ with L as its
head and whose positive goals are other literals in X, we know that
such a rule also exists in P, with the possible addition of negated
literals as goals. However, we know that these negated literals must
succeed, that is, all rules with the positive form of such literals in
their heads must fail, either by calling the negation of some literal
in the answer set or by calling their heads recursively without an
intervening negation. Were this not the case, these rules would
remain in P’, their heads would be included in LFP(P’) and X
would not be a valid answer set of P. Therefore, a combination of
rules may be found such that each literal in X appears as the head
of at least one rule which will succeed under top-down execution,
and whose positive goals are all other literals in X. Furthermore,
because each literal in the query must be satisfied and added to the
CHS, and any rule with a goal whose negation is present in the CHS
will fail, such a combination of rules will eventually be executed by
our algorithm. Because such rules would also be present in P’, we
know that they cannot add additional positive literals to the CHS,
as these would be part of LFP(P’), again rendering X invalid.

Table 1. N-Queens Problem; Times in Seconds
Problem Galliwasp clasp cmodels smodels

queens-12 0.033 0.019 0.055 0.112
queens-13 0.034 0.022 0.071 0.132
queens-14 0.076 0.029 0.098 0.362
queens-15 0.071 0.034 0.119 0.592
queens-16 0.293 0.043 0.138 1.356
queens-17 0.198 0.049 0.176 4.293
queens-18 1.239 0.059 0.224 8.653
queens-19 0.148 0.070 0.272 3.288
queens-20 6.744 0.084 0.316 47.782
queens-21 0.420 0.104 0.398 95.710
queens-22 69.224 0.112 0.472 N/A
queens-23 1.282 0.132 0.582 N/A
queens-24 19.916 0.152 0.602 N/A

Table 2. MxN-Pigeons Problem (No Solution for M>N)
Problem Galliwasp clasp cmodels smodels

pigeon-10x10 0.020 0.009 0.020 0.025
pigeon-20x20 0.050 0.048 0.163 0.517
pigeon-30x30 0.132 0.178 0.691 4.985

pigeon-8x7 0.123 0.072 0.089 0.535
pigeon-9x8 0.888 0.528 0.569 4.713

pigeon-10x9 8.339 4.590 2.417 46.208
pigeon-11x10 90.082 40.182 102.694 N/A

Table 3. MxN-Coloring problem (No Solution for M=3)
Problem Galliwasp clasp cmodels smodels

mapclr-4x20 0.018 0.006 0.011 0.013
mapclr-4x25 0.021 0.007 0.014 0.016
mapclr-4x29 0.023 0.008 0.016 0.018
mapclr-4x30 0.026 0.008 0.016 0.019
mapclr-3x20 0.022 0.005 0.009 0.008
mapclr-3x25 0.065 0.006 0.011 0.010
mapclr-3x29 0.394 0.006 0.012 0.011
mapclr-3x30 0.342 0.007 0.012 0.011

This leaves the NMR check, which ensures the set returned by
our algorithm satisfies all OLON rules in P. However, we know this
is the case, as the subset of positive literals in the CHS is equal to
X. Because X is a valid answer set of P, there cannot be any rule
in P which renders X invalid, and thus the NMR check must be
satisfiable by a set of literals containing X. We also know that the
NMR check will not add additional positive literals to the CHS, as
any rules able to succeed would be present in P’ and thus present
in LFP(P’).

Therefore any valid answer set X of a program P must succeed
if posed as a query for top-down execution of P. Thus our top-down
algorithm is complete with respect to the GL method.

6. Performance Results
The goal-directed method described in this paper has been imple-
mented in our system Galliwasp. In addition to the goal-directed
method presented here, Galliwasp incorporates various other tech-
niques to improve performance, including incremental enforcement
of the NMR check [19]. Tables 1, 2 and 3 give performance results
for some example programs. For the purpose of comparison, results
for clasp, cmodels and smodels are also given.

The Galliwasp system consists of two programs, a compiler
and an interpreter. The times given are for our interpreter using



a compiled program and for the other solvers reading a program
grounded by lparse. Neither compilation nor grounding times are
factored into the results. A timeout of 600 seconds was enforced,
with the instances which timed out listed as N/A in the tables.

As these results demonstrate, our goal-directed method is prac-
tical and can be efficiently implemented. While additional perfor-
mance increases are possible, the Galliwasp interpreter is already
significantly faster than smodels in almost every case and compa-
rable to clasp and cmodels in most cases.

7. Discussion and Related Work
There are many advantages of top-down goal-directed execution of
answer set programs, the main one being that it paves the way to
answer set programming with predicates. The first step is to extend
our method to datalog answer set programs, i.e., programs that
allow only constants and variables as arguments in the predicates
they contain [20].

Another advantage of goal-directed execution is that answer set
programming can be made to work more naturally with other exten-
sions that have been developed within logic programming, such as
constraint programming, abduction, parallelism, probabilistic rea-
soning, etc. This leads to more sophisticated applications. Timed
planning, i.e., planning in the presence of real-time constraints, is
one such example [2].

With respect to related work, a top-down, goal-directed exe-
cution strategy for ASP has been the aim of many researchers in
the past. Descriptions of some of these efforts can be found in
[1, 4, 5, 8, 9, 15, 23, 24, 26]. The strategy presented in this pa-
per is based on one presented by several of this paper’s authors in
previous work [14, 21]. However, the strategy presented in those
works was limited to call-consistent or order-consistent programs.
While the possibility of expansion to arbitrary ASP programs was
mentioned, it was not expanded upon, and the proofs of soundness
and completeness covered only the restricted cases [21].

A query-driven procedure for computing answer sets via an
abductive proof procedure has been explored [7, 16]: a consistency
check via integrity constraints is done before a negated literal is
added to the answer set. However, “this procedure is not always
sound with respect to the above abductive semantics of NAF” [16].
Alferes et al [1] have worked in a similar direction, though this is
done in the context of abduction and again goal-directedness of
ASP is not the main focus. Gebser and Schaub have developed
a tableau based method which can be regarded as a step in this
direction, however, the motivation for their work is completely
different [9].

Bonatti, Pontelli and Tran [5] have proposed credulous resolu-
tion, an extension of earlier work of Bonatti [4], that extends SLD
resolution for ASP. However, they place restrictions on the type of
programs allowed and the type of queries allowed. Their method
can be regarded as allowing coinductive success to be inferred only
for negated goals. Thus, given query :- p and program P1, the
execution will look as follows: p → not q → not not p →
not q → success. Compared to our method, their method per-
forms extra work. For example, if rule P1.1 is changed to p :-
big goal, not q, then big goal will be executed twice. The
main problem in their method is that since it does not take coin-
duction for positive goals into account, knowing when to succeed
inductively and when to succeed coinductively is undecidable. For
this reason, their method works correctly only for a limited class of
answer set programs (for example, answers to negated queries such
?-not p cannot be computed in a top-down manner). In contrast,
our goal-directed method works correctly for all types of answer
set programs and all types of queries.

Pereira’s group has done significant work on defining seman-
tics for normal logic programs and implementing them, including

implementation in a top-down fashion [1, 23, 24]. However, their
approach is to modify stable model semantics so that the property
of relevance is restored [23]. For this modified semantics, goal-
directed procedures have been designed [24]. In contrast, our goal
is to stay faithful to stable model semantics and answer set pro-
gramming.

8. Conclusions
The main contribution of our paper is to present a practical, top-
down method for goal-directed execution of Answer Set programs
along with proofs of soundness and completeness. Our method
stays faithful to ASP, and works for arbitrary answer set programs
as well as arbitrary queries. Other methods in the literature ei-
ther change the semantics, or work for only restricted programs
or queries. Our method achieves this by relying on the coinduc-
tive logic programming paradigm. Details of our method were pre-
sented, along with proofs of soundness and correctness, and some
preliminary performance results. A goal-directed procedure has
many advantages, the main one being that execution of answer set
programs does not have to be restricted to only finitely groundable
ones. Our work thus paves the way for developing execution pro-
cedures for ASP over predicates. A goal-directed strategy permits
an easier integration with other extensions of logic programming,
which in turn makes it possible to develop more interesting appli-
cations of ASP and non-monotonic reasoning. Our current work is
focused on refining our implementation to improve efficiency and
add support for features such as constraints and predicates.
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A. Co-SLD Resolution
As mentioned in the introduction, our goal-directed method relies
on coinductive logic programming (co-LP) [14]. Co-SLD resolu-
tion, the operational semantics of coinduction, is briefly described
below. The semantics is limited to regular proofs, i.e., those cases
where the infinite behavior is obtained by infinite repetition of a
finite number of finite behaviors.

Consider the logic programming definition of a stream (list) of
numbers as in program R1 below:

stream([]).
stream([H|T]) :- number(H), stream(T).

Under SLD resolution, the query ?- stream(X) will systemati-
cally produce all finite streams one by one starting from the []
stream. Suppose now we remove the base case and obtain the pro-
gram R2:

stream([H|T]) :- number(H), stream(T).

In the program R2, the meaning of the query ?- stream(X) is
semantically null under standard logic programming. In the co-
LP paradigm the declarative semantics of the predicate stream/1
above is given in terms of infinitary Herbrand (or co-Herbrand)
universe, infinitary Herbrand (or co-Herbrand) base [18], and
maximal models (computed using greatest fixed-points) [27]. The
operational semantics under coinduction is as follows [27]: a pred-
icate call p(t̄) succeeds if it unifies with one of its ancestor calls.
Thus, every time a call is made, it has to be remembered. This set
of ancestor calls constitutes the coinductive hypothesis set (CHS).
Under co-LP, infinite rational answers can be computed, and infi-
nite rational terms are allowed as arguments of predicates. Infinite
terms are represented as solutions to unification equations and the
occurs check is omitted during the unification process: for exam-
ple, X = [1 | X] represents the binding of X to an infinite list of
1’s. Thus, in co-SLD resolution, given a single clause

p([ 1 | X ]) :- p(X).
The query ?- p(A) will succeed in two resolution steps with the
answer A = [1 | A], which is a finite representation of the infi-
nite answer A = [1, 1, 1, ....]. Under coinductive interpre-
tation of R2, the query ?- stream(X) produces all infinite sized
streams as answers, e.g., X = [1 | X], X = [1, 2 | X ], etc.
Thus, the semantics of R2 is not null, but proofs may be of infi-
nite length. If we take a coinductive interpretation of program R1,
then we get all finite and infinite streams as answers to the query
?- stream(X).

B. Detailed Execution Example
We now present a larger, more complex example of execution using
our goal-directed method. Consider program A1:

p :- not q. . . . Rule A1.1
q :- not r. . . . Rule A1.2
r :- not p. . . . Rule A1.3
q :- not p. . . . Rule A1.4

Rules A1.1, A1.2 and A1.3 are OLON rules, as calls to propositions
p, q, and r in the heads of these rules lead to recursive calls to
p, q and r respectively that are in the scope of odd numbers of
negations. A1.1 is also an ordinary rule, since in conjunction with
rule A1.4, a call to p resolved via rule A1.1 will lead to a call to
p in rule A1.4 that is in the scope of an even number of negations.
Thus, the nmr check rule can be defined as:

nmr check :- not chk p, not chk q, not chk r.
chk p :- not p, not q.
chk q :- not q, not r.
chk r :- not r, not p.

The duals of the above rules are as follows:

not p :- q. . . . Rule A1.6
not q :- r, p. . . . Rule A1.7
not r :- p. . . . Rule A1.8
not chk p :- p; q.. . . Rule A1.9
not chk q :- q; r.. . . Rule A1.10
not chk r :- r; p.. . . Rule A1.11

Negated calls are resolved using these dual rules. Now the query q
will be extended to q, nmr chk and executed as follows:

:- q, nmr chk. CHS = {}; Rule A1.2
:- not r, nmr chk.CHS = {q}; Rule A1.8
:- p, nmr chk. CHS = {q, not r}; Rule A1.1
:- not q, nmr chk.CHS = {q, not r}

fail: backtrack to step 1
:- q, nmr chk. CHS = {}; Rule A1.4
:- not p, nmr chk.CHS = {q, not p}; Rule A1.6
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:- q, nmr chk. CHS = {q, not p}
coinductive success

:- nmr chk. CHS = {q, not p}
execution of q finished

:- not chk p, not chk q, not chk r.
CHS = {q, not p}
nmr chk rule

:- (p ; q), not chk q, not chk r.
CHS = {q, not p}
not p is in CHS

:- q, not chk q, not chk r.
CHS = {q, not p}
coinductive success for q

:- not chk q, not chk r.
CHS = {q, not p}; Rule A1.10

:- (q ; r), not chk r.
CHS = {q, not p}
coinductive success for q

:- not chk r. CHS = {q, not p}; Rule A1.11

:- r ; p. CHS = {q, not p, r}; Rule A1.3

:- not p ; p. CHS = {q, not p, r}
coinductive success for not p

:- �. success.
answer set is {q, not p, r}
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